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Lévy dusts, Mittag-Leffler statistics, mass fractal lacunarity, and perceived dimension
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We study the Le´vy dusts on the line on two accounts: the fluctuations around the average power law
that characterizes the mass-radius relation for self-similar fractals, and the statistics of the intervals be-
tween strides along the logarithmic axis~their tail distribution is related to the dust’s fractal dimension!. The
Lévy dusts are suggested as a yardstick of neutral lacunarity, against which non-neutral lacunarity can be
measured objectively. A notion of perceived dimension is introduced. We conclude with an application of the
Mittag-Leffler statistics to a nonlinear electrical network.@S1063-651X~97!10202-1#
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I. INTRODUCTION TO CHARACTERIZATION
OF FRACTALS BEYOND THE DIMENSION:
LACUNARITY, NEUTRAL LACUNARITY

AS DEFINED BY ANTIPODAL INDEPENDENCE,
LÉVY DUSTS, AND THEIR SAMPLING PROPERTIES

This paper uses probability theory to define a neutral fr
tal lacunarity and suggests a way to measure lacunarity w
it is not neutral. Critical percolation clusters, for examp
are of neutral lacunarity and will be studied elsewhere. S
eral papers discussed lacunarity and its concrete uses. Bu
topic is still new and unfamiliar, therefore we shall begin
addressing the fundamental issues.

Visual lacunarity.Consider the Cantor dusts stacked
Fig. 1 reproduced from@1#. These dusts share the same fra
tal dimension,D51/2, but differ in an obvious manne
Those at the stack’s bottom have small holes, can be
scribed as fine grained, and mimic filled-in intervals. In R
@2# they are termedlow lacunarity. Those at the stack’s top
have big holes, can be described as coarse grained,
mimic two dots; they are termedhigh lacunarity. This dem-
onstrates a general point; a set with a given fractal dimen
D can be made to mimic a broad range of quite differ
textures, pointing to the fact that the fractal dimension is
enough to uniquely characterize fractals.

There is a strong need to measure quantitatively the
ferences in lacunarity between textures in self-similar phy
cal structures, such as galaxy distributions, spin domain
magnetic systems, diffusion-limited aggregates, microstr
tures of porous and composite materials, and so on. Fou
analysis and spectral characterization only give the fra
dimension. It would be convenient if the quantitative l
cunarity to quantify these differences would take the valu
in those cases where the lacunarity can sensibly be said
‘‘neutral,’’ i.e., right on the boundary between high and lo

The main goal of this paper can now be sketched. A fr
tal of non-neutral lacunarity seems to the eye to have
apparent fractal dimension different from the actual val
Therefore, we shall investigate fractal dusts on the line
define for them a quantity that will be denoted byDP and
called ‘‘perceived dimension.’’ This isnot a fractal dimen-
sion, but the eye trained on Le´vy dusts may perceive it a
one. The perceived dimension can be higher or lower t
561063-651X/97/56~1!/112~7!/$10.00
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the fractal dimension, depending on lacunarity. Dimensio
must not be multiplied beyond necessity~and they have al-
ready multiplied beyond comfort!, but necessity has arise
again. In effect,DP measures how low or high a given fract
sits on a stack such as that illustrated in Fig. 1.

These issues raise a few difficulties:~a! The notion of
lacunarity turns out to be many sided, giving rise to seve
distinct definitions. As a matter of fact, this paper will di
cuss two versions of a concept one may callfluctuation la-
cunarity. ~b! Some of those definitions~but notDP! fail to
define a neutral state.~c! All definitions are statistical. For
example, while the Cantor dusts illustrated in Fig. 1 are g
erated by a deterministic mechanism, typical empirical st
ies may involve, instead of a full dust in~0,1!, a piece con-
tained between two points randomly selected in time; suc
piece is a random set. In the random context, each mea
of lacunarity is a function of a sample of observations. Th
is, even when the true lacunarity is neutral, with typic
value 0, the value actually measured on a sample is a ran
variable. Hence, the difference between measurements m
on samples of two distinct fractals will reflect not only th
difference between true lacunarities, but also a samp
error.

FIG. 1. A stack of Cantor sets of equal dimensionD51/2,
whose lacunarity changes from very low at the bottom to very h
at the top of the stack.
112 © 1997 The American Physical Society
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56 113LÉVY DUSTS, MITTAG-LEFFLER STATISTICS, MASS . . .
The mass-radius relation, its prefactor F, the prefactor’s
variability factor, and a measure of lacunarity.Given a ball
of radiusR in E dimensions, which encloses a self-simil
fractal structure, the total mass~measure! M (R) enclosed by
the ball is known@2# to take the form

M ~R!5FRD ~1.1!

or

ln M ~R!5 ln F1D ln R.

The exponentD is the fractal dimension and is smaller tha
the embedding Euclidean dimensionE. In the case of the
Lévy dust, the prefactorF is a random variable independe
of R. For bothF and lnF, we obtain the expectation, var
ance, and other statistical properties. Operatively, the di
bution of the prefactorF can be constructed by moving th
origin of a ball of radiusR throughout the structure, measu
ing the mass enclosed by the ball, and repeating the pr
dure for many values ofR. The existence of a well-definedF
independent ofR presupposes that the structure is se
similar with respect to all reduction ratiosr , and hence calls
for description as a random fractal. A systematic fractal s
as the Cantor dust is self-similar with respect to reduct
ratios r that fall into a geometric sequence~such as 42h in
Fig. 1!; it follows that F is a noisy function that is roughly
periodic with period lnR @3#.

The prefactorF, or even its expectation, received far le
attention in the literature than the scaling exponentD. The
importance ofF resides in its intimate connection to th
concept of lacunarity. To understand why, note that the
semble average relation~1.1!, ^M (R)&5^F&RD, is in effect
the density-density correlation function of the structure m
tiplied by RE. In translationally invariant systems, th
density-density correlation function gives information on t
mass fluctuations, and hence on texture, but due to the
tion symmetry of fractals, this function only yields the qua
tity F and the scaling exponent of the average mass. Si
as we have already noted, a fractal structure cannot be
scribed only by its dimension, one signature beyond sim
scaling is the statistical variability~to be defined below! of
M (R) for fixed R. Intuitively, this variability ought to be
smaller in a fine-grained structure than in a coarse-grai
one. Hence, a possible signature of lacunarity is the ratio
the variance to the square of the expectation, as measure
eitherF or ln F.

The Lévy dust as a yardstick of neutral lacunarity; antipo
dal correlation.The least structured or ‘‘most relaxed’’ of a
point distributions on the line is the Le´vy dust, which is
generated as the set of positions of an increasing Le´vy flight.
The successive steps in a flight follow the distributi
Pr$U>u%5u2D, and are independent. Therefore, the Le´vy
dustL has the property that, if the originV belongs toL, the
portions of the dust to the right and the left ofV are statis-
tically independent. Those opposite directions are denote
the term ‘‘antipodal.’’ One of us@2# observed that a positive
correlation between those halves is perceived as low lacu
ity and a negative correlation is perceived as high lacuna
It follows that the Lévy dust is a useful standard ofneutral
lacunarity. It was shown@4# that linear cuts through critica
percolation and Ising clusters are of neutral lacunarities.
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also @5#. This motivated us to investigate the Le´vy dusts
deeper, from viewpoints that did not previously seem co
pelling. The generalization to fractals embedded in hig
dimensions is not straightforward and will be presented e
where.

This paper is constructed as follows. Section II introduc
the Lévy flight process and the resultant Le´vy dust. The re-
duced massM (R)R2D for the Lévy dust is a Feller-Mittag-
Leffler ~FML! random variable and we discuss its propert
and plot its distribution~apparently, for the first time!. Sec-
tion III uses the ratio of variance to squared expectation
the FML random variable to define the perceived dimens
Dp . We mention in Sec. III generalizations concerni
higher cumulants of the FML distribution. Section IV ad
dresses the distribution of the logarithm of the Feller-Mitta
Leffler variable, and discusses its properties and its bilat
Laplace transform. We show how its Fourier transfo
yields an accurate measure of the fractal dimension. Sec
V analyzes the distribution of strides on the lnR axis, which
is closely related to the Le´vy-flight process. We show tha
this distribution possesses a rich and instructive behavior
we present numerical results in support of our predictio
Section VI demonstrates the applicability of the Mitta
Leffler statistics to a nonlinear electrical network. We co
clude in Sec. VII by discussing some implications of o
results and possible new directions.

II. THE LE´VY FLIGHT AND THE
FELLER-MITTAG-LEFFLER RANDOM

VARIABLES AND PROCESSES

In the following, we shall adopt the probabilists’ nota
tions, denoting random variables by upper-case letters
their values by the corresponding lower-case letter. For 0,D
,1, a truncated Le´vy flight process on the line is as follow
@1#: Start with a uniform distribution in the range~e,1!,
wheree→01, and choose an array ofM ordered numbersui
( i51,2,...,M ). From this array form the following sequenc
of numbersVm :

Vm5(
i51

m

Ui
21/D ~m51,2,...,M !, 0,D,1. ~2.1!

The collection of the pointsVm.0 on the positive half line
constitutes a truncated Le´vy dust. It is known that, in the
limit e→0, the number of these points within a distanceR
from the origin satisfies Eq.~1.1!.

The FML distribution.It is known @6# that the random
prefactorF follows the Mittag-Leffler distribution, whose
probability density is

mD~ f !5
1

p (
k51

`
~21!k21

~k21!!
sin~pkD!G~kD! f k21,

0, f,`. ~2.2!

The Mittag-Leffler distribution was first observed by Wi
Feller, who chose this name because the generating func
of mD( f ) is the Mittag-Leffler function:
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114 56RAPHAEL BLUMENFELD AND BENOIT B. MANDELBROT
L~ tumD!5E
0

`

e2t fmD~ f !d f5 (
k50

`
~2t !k

G~11kD!
. ~2.3!

We hope that our denotation here will restore to W. Fe
some credit that he deserved but chose not to claim. A
properties of this distribution were known@7#: for D→0,
mD( f )→exp~2f !; for D51/2, mD( f ) is a half-Gaussian
and, forD→1, mD( f ) approaches thed function. The form
of ~2.3! indicates that the integerm-th moments ofmD( f )
are

^ f m&5
m!

G~11mD!
. ~2.4!

The FML random processes.The reduced mas
F5M (R)R2D can be considered a function ofR. Its mar-
ginal distribution for givenR is a FML distribution, whose
sample functions in time to our knowledge have not be
investigated until now. We think that they deserve to
called FML random functions.

III. LACUNARITY AS DEFINED THROUGH THE MASS
VARIABILITY, AND THE CONCEPT
OF ‘‘PERCEIVED DIMENSION’’

The variability factor.A possible second-order characte
ization of lacunarity is the variability factor@8#

F~D ![
Š~ f2^ f &!2‹

^ f &2
5

^ f 2&

^ f &2
21. ~3.1!

From Eq.~2.4! we find

F~D !5
2G2~11D !

G~112D !
21,

which is plotted in Fig. 2 againstD.

FIG. 2. The variability factorF(D) for the Lévy flight ~solid
line!. The dotted~dash-dotted! line is an example of systems wit
perceived dimensions,DP higher ~lower! thanD and hence with
lacunarity which is below~above! neutral.
r
w

n
e

The variability factor is independent ofR due to the self-
similarity of the Lévy dust, and is related to the fact that th
jumps of the Le´vy flight have an infinite expectation. For th
stopovers of a flight in which the jumps have a finite expe
tation, the variability factorF depends onR, and tends to 0
asR→`, which is a restatement of the law of large numbe
~For example, in a Poisson process, the variability factor v
ies asR21.! For the Lévy dust, the factorF(D) is indepen-
dent ofR and decreases monotonically with the fractal
mensionD. For example,F~D→0!→1 for F~D51/2!5p/2
2150.5708, andF~D→1!→0.

It was to be expected that, for the Le´vy dust, the value of
this lacunarity should depend strongly on the fractal dim
sion. Indeed, a Le´vy dust nearD51 is almost uniformly
distributed and the variability factor of its mass,M (R),
should be small. On the other hand, a Le´vy dust withD!1 is
extremely uneven and the variability factor of itsM (R) has
to be very large. The graph ofF(D) confirms that for Le´vy
dusts lacunarity increases asD goes from 1 to 0. It also
shows thatF(D) is very sensitive toD nearD51, where
F8~1!521, and not at all sensitive nearD50, where
F8~0!50. Therefore, the techniques to be advanced be
are better suited for values ofD that are not very smal
compared to 1.

The perceived dimension.Let us consider now the Canto
stack shown in Fig. 1. When the lacunarity is far lower th
neutral, the set mimics a filled-in interval. That is, it mimic
a misleadingly higher value ofD. This in turn means tha
one expects the variability factor to be smaller than the t
value ofF(D).

The functionF(D) suggests then a perspicuous way
measure lacunarity. Invert the functionF(D) for the Lévy
dust, Eq.~3.1!, to obtain a functionDN~F!, where the index
N refers to the neutral character of the Le´vy dust. From the
measured histogram ofF for any given real system obtai
the measured value ofF. Now insert the measured value o
F into the functionDN~F!. The result can be called a~visu-
ally! ‘‘perceived dimension,’’ which we denote byDP . The
three possibilities that arise are interpreted as follows: W
DP5D, the lacunarity is defined as neutral; whenDP.D,
the lacunarity is defined below neutral; whenDP,D, the
lacunarity is defined above neutral.

Thus, one can take the value ofDP as a measure of la
cunarity. For example, suppose that in Fig. 2 the dotted
dash-dotted lines represent a set of measurements of the
tems’ variability factors. The entire dotted~dash-dotted! line
shows a perceived dimension higher~lower! than D and
therefore its lacunarity is below~above! neutral. Note that
this measure provides a different scale for each trueD, a
complication that may be avoided by taking the ratio of p
ceived to true dimension,DP/D @or perhaps,DP/(12D)#,
but we have not yet explored this idea.

Higher order variability factors.Once again, the main
significance ofF(D) in measurements of self-similar ran
dom data is that it helps distinguish different fractals with t
same, or similar, values ofD but different structure~lacunar-
ity!. One can generalize the above analysis to orders hig
than second and define the following families of quantitie

Sk~D ![
Ck~D !

@C1~D !#k
. ~3.2!
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56 115LÉVY DUSTS, MITTAG-LEFFLER STATISTICS, MASS . . .
In this expressionCk(D) is the kth cumulant of the FML
distribution. Clearly,S2(D)5F(D). It is straightforward to
show thatSk(D) is a decreasing function ofD for all k. For
example, forD→0, 1/2 and 1 andk52, 3, and 4 we find the
values given in Table I. For allk, in the limit D→0,
Sk→(k21)! and whenD→1, Sk→0.

IV. THE LOGARITHMIC MITTAG-LEFFLER
DISTRIBUTION

The traditional way to analyze fractal structures is to p
lnm against lnVm , which yields the fractal dimension as th
average slope of the resultant line. After this linear line h
been subtracted, the plot of lnF as function of lnR re-
sembles a noisy time series. Figure 3 shows a typical plo
such a process withD50.2. It is therefore natural to call lnF
the logarithmic Mittag-Leffler~LML ! random variable.

Consider the random variablesY and R̃ defined through

R̃5 ln R,

Y5 ln F5 ln M2D ln R.

Using Eq.~2.2!, the probability density ofY is

TABLE I. Values ofSk for k52,3,4 atD→0, 1/2, 1.

D S25F(D) S3 S4

D→0 1 2 6
D51/2 p/221 22p/2 2p26
D→1 0 0 0

FIG. 3. A typical plot of the mass logarithm vs the radius log
rithm ~both natural logarithms!. The fractal dimension in this plot is
D50.2.
t

s

of

gD~y!5mD~ f5ey!Ud fdyU
f5ey

5
ey

p (
k51

`
~2ey!k21

~k21!!
sin~pkD!G~kD!, ~4.1!

where2`,y,`.
Numerical evaluation and unimodality.Figure 4 plots

g(y) for values ofD that range fromD50.1 toD50.9 in
steps of 0.1. These plots are obtained by numerical eva
tion of the sum in Eq.~4.1!, cut off at a valuekmax beyond
which the remainder of the sum can be neglected.

For all D, gD(y5`)50. SincegD(y) is not constant,
there exists at least oney* for which g(y* ) is a maximum,
i.e., gD(y* )>gD(y) for all y. It can be shown very easily
that forD→1, 1/2, y* is unique, so thatg(y) is unimodal.
Indeed, by plottingg(y) for many values ofD between 0
and 1~Fig. 4! we find that this result holds for allD in this
range.

The bilateral Laplace transform and related analytic r
sults. The bilateral Laplace transform ofgD(y) is

L~ tugD!5E
2`

`

etygD~y!dy5
G~11t !

G~11tD !
~4.2!

for any positive and integer value oft. The right-hand side of
Eq. ~4.2! is obtained by substituting the form~4.1! in the
integral and changing variables tof5ey. The proof that the
resulting integral is exactly thetth moment Eq.~2.4! is
straightforward and uses Eqs.~2.2! and ~2.4!. For complex
valuest5u1 i t ~provided that the integral for the momen
exists!, we use the generalized form of the gamma funct
@9#, and relation~4.2! becomes

L~u1 i tug!5
G~11u1 i t!

G„11~u1 i t!D…
, ~4.3!

which for u50 is the bilateral Fourier transform. Using@9#,
the spectral intensity is

zF~tug!z25
1

D

sinh~ptD !

sinh~pt!
. ~4.4!

Relation ~4.4! is easy to check for the three values ofD
where the FML is known explicitly. Integrating over th

-

FIG. 4. The logarithmic Mittag-Leffler probability densit
against log2(x) for D50.1–0.9 in steps of 0.1. The highest pe
belongs to the curve withD50.1.
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116 56RAPHAEL BLUMENFELD AND BENOIT B. MANDELBROT
( i t)th momentF(tug)5* 0
` f i tmD( f )d f immediately yields

Eq. ~4.4! for these three values.
Direct relevance of relation (4.4) to practical measur

ments of D. For small values oft we find, by expanding
relation ~4.4!,

uF~tug!u2;12~12D !2
p2

6
t2;exp$2p2t2~12D2!/6%.

~4.5!

Whenevert is not very small, such that exp(2ptD) is not
very close to 1, we obtain

ln„zF~tug!z2…;const3@2p~12D !t#. ~4.6!

Thus, plotting the intensityzF~tug!z2 semilogarithmically it
should be possible to observe a constant slope fort.1/
(2pD), which extends over a wide range of values oft. For
small values oft „@A6/@p~12D!#…, this plot should be de-
creasing parabolically. It follows that relations~4.6! and
~4.7! allow one to cross determine the dimension of the s
tem. Given a system whose fractal dimension is unknown
we need to do is construct the histogram of the random v
ableY and then Fourier transform it. Plotting the logarith
of the absolute square~the intensity! of the Fourier coeffi-
cient as a function oft should give, away from the origin,
straight line of slopep~12D! as in Eq.~4.6!. This method
can be used to check on the traditional method of plott
lnm versus ln(Rm). Furthermore, this technique may b
more accurate for systems that are not large enough for
usual mass averaging. Therefore its applicability is m
promising at low fractal dimensions~D!1!. We will pursue
this issue in Sec. V.

V. THE DISTRIBUTION OF THE RELATIVE JUMPS
IN THE RADIUS

Self-similarity concerns dilation or reduction, which a
multiplicative operations. Taking logarithms transform
them into translations. A particular application of such
transformation to logarithmic coordinates is discussed in@3#.
For example, take the standard Cantor dust on@0,1#, extrapo-
late it to the right by successive expansions of ratio 3, a
look at it in the coordinatet̃5ln t. When the dust is infi-
nitely interpolated, its image in ln~time! is a periodic point
process on the whole line, in which large gaps of length l
alternate with deformed Cantor dusts of length ln~3/2!. Now,
consider a truncated dust, i.e., one interpolated down
smallest ‘‘atom,’’ but no further. Its image in ln~time! is a
process on the half-line to the right of the origin. The su
cessive large gaps are unchanged by the imposition o
inner cutoff, and the successive pieces between the g
build up as one moves right to an infinitely interpolated d
formed Cantor dust. In that limit, the distribution of the g
lengths converge to a well-defined limit. For small g
lengths, this limit is Pr(V.u);u2D.

Let us return to our random Le´vy dust. Once again, in
logarithmic coordinates the dust transforms into a station
random point process. In other words, the quantity
-
ll
i-

g

he
e

d

2

a

-
an
ps
-

ry

rm5Vm2Vm215 lnF 11
um

21/D

(
i51

m21

ui
21/DG ~5.1!

has a limit distribution independent ofm. We reiterate that
the FML random processM (R)R2D can be viewed as func
tion of lnR and it becomes a Feller-Mittag-Leffler process
this variable. The random variablerm is the difference be-
tween themth and the~m21!th steps on the logarithmic axi
on which the Le´vy dust was mapped. In practice, as w
know, the values ofui are picked from a uniform probability
density that ranges fromumin5e.0 to umax51. A lower cut-
off is required by both physics and computational co
straints. We stress that the results are independent oe,
which simply facilitates the calculations. Thus the probab
ity density ofui is

f ~ui !5 H1/~12e!,
0,

e,ui,1
otherwise. ~5.2!

We now seek the probability density of the variab
nm5exp~rm!. The probability density ofn, P̃~n!, can be
found through

P̃~nm!5E
0

`S )
i51

m

f ~ui !dui D dFnm2S 11
um

21/D

( i51
m21ui

21/DD G
5S D

12e D mE1e21/DF )
i51

m21

v i
2~D11!dv i G

3F ~nm21! (
i51

m21

v i G2~D11!

. ~5.3!

Using the normalization condition and some algebra we fi
that

P̃~nm!5
eD

~12e2!~m21!D
~nm21!2~D11! ~5.4!

The next step is to obtain the probability density ofrm :

P~rm!5F P̃~nm!
dnm
drm

G
nm5exp~rm!

5
eD

~12e2!~m21!D
erm

~erm21!D11 , ~5.5!

whererm is defined over the interval

„ln@11e1/D/~m21!#, ln@11e21/D/~m21!#…,

which tends to~0,̀ ! as e→0. This probability density de-
creases monotonically withrm from its maximal value of

Pmax5
D

12e2
@~m21!e21/D11# ~5.6!

at the lowest value ofrm . Moreover,P is a strictly convex
function of its argument; a property that can be verified
considering the signs of successive derivatives ofP: In terms
of t[erm21, Eq. ~5.5! becomes
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P~ t !5P0~ t
2D1t2D21!, P05

eD

~12e2!~m21!D
. ~5.7!

The sign of thekth derivative,d(k)P(rm)/dr m
k , is the same

as that ofd(k)P(t)/dtk5(21)k. This change of sign with
successive differentiations shows thatP(rm) is strictly con-
vex.

In the plot of the logarithm ofP(rm) as a function of
tm5exp~rm!21, it should be possible to detect the combin
tion of the two slopes2D and2D21 in expression~5.7!.
At low values of tm ~i.e., rm very close to zero! the mean
slope is2D21 and it crosses over to2D for large values of
tm . This distribution plays an important role in many phys
cal systems and the tail of the cumulative distribution of
variablerm , G( r̃), is

G~ r̃ !5E
ln r̃

`

P~rm!drm5
e

12e2
@~ r̃21!2D~m21!D2e.

~5.8!

Since the behavior is not purely exponential in lnr̃ there
appears a crossover when the first term in the curly brac
becomes comparable toe. This can be understood by in
specting relation~5.8!: asD decreases, the first term in th
curly brackets decreases and for a given value ofe the two
terms become comparable for larger values ofr̃.

VI. THE FML IN A SYSTEM OF NONLINEAR VARISTORS

The Mittag-Leffler statistics have many interesting app
cations in physical systems, most of which have not yet b
recognized or addressed. Here we give an illustrative
ample of one such application: the occurrence of the F
distribution in a conducting system of varistors. A varistor
a nonlinear resistor that follows a current-voltage charac
istic of the form@10#

Vj5r j I j
a , ~6.1!

whereVj and I j are, respectively, the voltage drop and t
current pertaining to thej th varistorr j is a coefficient, which
we term resistance due to its being parallel to the usual lin
resistance, but whose units areV/Aa21. The parametera
~which is usually temperature dependent! is presumed con-
stant for all the varistors in the structure. We shall limit o
discussion to the sublinear regime 0,a,1. We considerm
varistors connected in parallel between two nodesA andB as
in Fig. 5,

VAB5RABI AB
a . ~6.2!

The question that we address is howRAB is distributed. For a
given realization of the local variablesr j , the value ofRAB is
given exactly by

RAB5S (
j51

m

r j
21/aD 2a

. ~6.3!

The direct equivalence between relations~6.3! and ~2.1! is
immediately apparent via the transformations

a↔D, r j↔uj , Vm↔RAB
21/a .
-

e

ts

-
n
x-
L

r-

ar

r

Substituting these into Eq.~1.1! yields

RAB5F/m, ~6.4!

and it follows thatRAB is a FML random variable with
ma( f ) @see Eq.~2.2!#. For example, the average ofRAB is

^RAB&51/@mG~11a!#. ~6.5!

Similarly, the second moment of this distribution is

^dRAB
2 &5^RAB

2 &2^RAB&
25

2

mG~112a!
2

1

m2G2~11a!
,

~6.6!

and so on. Thus the above analysis directly applies to
system and one can learn about the statistics of the nonli
conducting system by adapting relations from the Le´vy dust
statistics.

It should be mentioned that the same calculation can
applied tocontinuousnonlinear dielectrics with slabs in par
allel or perpendicular to the capacitor plates, since the
pression for the total dielectric constant has exactly the sa
form as Eq.~6.3! @11#.

VII. CONCLUSION

Characterization of fractal structures by lacunarity is
much needed step beyond description by a fractal dimens
It is difficult to know from measuring a seemingly rando
structure what is the process that generated it. Further, e
if the process was known, the structure’s statistics are usu
difficult to analyze. Therefore, it is of value to have a bas
line system, whose mass distribution is well understood,
against which lacunarities of other fractal processes can

FIG. 5. A varistors electric circuit realization of Mittag-Leffle
variables and statistics.
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compared and classified. We propose the Le´vy dust for this
role. Since the Fourier transform of the LML distribution
known explicitly, one can analyze the spectrum of a m
sured stochastic process at hand and compare with the´vy
dust. The similarities and differences can then yield inform
tion about the rules that generated the observed structur

We addressed in detail the lacunarity of the Le´vy dust and
generalized the definition of lacunarity given in@8# to higher
order cumulants of the distribution of lnF obtaining a family
of related quantitiesSk for the Lévy dust, theSk depend only
on the fractal dimensionD. This confirms that lacunarity
cannot reduce to one number but requires several mea
ments that are mutually dependent in subtle ways.

We also discussed the distribution of the strides betw
themth and the~m21!th steps along the lnR axis, and found
its tail distribution. This tail is directly related to the appare
self-similarity and gives another possibility to measure
fractal dimension. The advantage of this method of determ
ing D is in its robustness against errors due to too sm
statistics and hence is valuable for low values ofD, where
traditional approaches need gathering of many points, res
ing to very large data sets.

It should be emphasized thatF andSk are not the only
be

us

t,
t

y

-

-
.

re-

n

t
e
-
ll

rt-

possible characterizations of lacunarity. See, e.g., Refs.@3#
and@4#. For Cantor dusts and other highly hierarchical stru
tures,M (R)R2D is not a random variable independent ofR,
but rather a noisy periodic function of lnR @3# and the notion
of lacunarity becomes more involved. Such a log-oscillato
behavior occurs, for example, in fracture sidebranching@12#
and in many biological branching systems. The notion
lacunarity is also beginning to play a central role in the stu
of diffusion-limited aggregation@13#. A related approach to
lacunarity@4# concerns the statistics of antipodal correlatio
about points in the structure. In one dimension, for examp
this consists of correlations between ‘‘forward’’ and ‘‘bac
word’’ structures. The connection between this and our
proach deserves a careful look.
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~Birkhäuser, Basel, 1993!, p. 8.

@2# B. B. Mandelbrot,The Fractal Geometry of Nature~Freeman,
New York, 1982! pp. xii, 461, xvi.

@3# R. Blumenfeld and R. C. Ball, Phys. Rev. E47, 2298~1993!;
Fractals1, 985 ~1993!.

@4# B. B. Mandelbrot and D. Stauffer, J. Phys. A27, L237 ~1994!;
see also B. B. Mandelbrot, R. Pastor-Satorras, and E. Ra
~unpublished!.

@5# J. P. Hovi, A. Aharony, D. Stauffer, and B. B. Mandelbro
Phys. Rev. Lett.77, 877 ~1996!. See also B. B. Mandelbro
~unpublished!.

@6# W. Feller, Trans. Am. Math. Soc.67, 98 ~1949!.
@7# B. B. Mandelbrot, inProceedings of the Fifth (1965) Berkele

Symposium on Mathematical Statistics and Probability, edited
l

ch

by L. LeCam and J. Neyman~University of California Press,
Berkeley, CA, 1967!, pp. 3, 155–179.

@8# Y. Gefen, B. B. Mandelbrot, Y. Meir, and A. Aharony, Phy
Rev. Lett.50, 145 ~1983!.

@9# See, e.g., Abramowitz and I. A. Stegun,Handbook of Math-
ematical Functions~Dover, New York, 1972!.

@10# R. Blumenfeld and A. Aharony, J. Phys. A18, L443 ~1985!; R.
Blumenfeld, Y. Meir, A. Aharony, and A. B. Harris, Phys
Rev. B35, 3524~1987!.

@11# R. Blumenfeld and D. J. Bergman, Phys. Rev. B44, 7378
~1991!.

@12# R. C. Ball and R. Blumenfeld, Phys. Rev. Lett.65, 1784
~1990!; R. C. Ball, P. W. H. Barker, and R. Blumenfeld, Eu
rophys. Lett.16, 47 ~1991!.

@13# B. B. Mandelbrot, Physica A191, 95 ~1992!; B. B. Mandel-
brot, H. Kaufman, A. Vespignani, I. Yekutieli, and C.-H. Lam
Europhys. Lett.29, 599 ~1995!; B. B. Mandelbrot, A. Vespig-
nani, and H. Kaufman,ibid. 32, 199 ~1995!.


