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We study the [ey dusts on the line on two accounts: the fluctuations around the average power law
that characterizes the mass-radius relation for self-similar fractals, and the statistics of the intervals be-
tween strides along the logarithmic axtbeir tail distribution is related to the dust’s fractal dimensicFhe
Lévy dusts are suggested as a yardstick of neutral lacunarity, against which non-neutral lacunarity can be
measured objectively. A notion of perceived dimension is introduced. We conclude with an application of the
Mittag-Leffler statistics to a nonlinear electrical netwdr81063-651X97)10202-1

PACS numbd(s): 64.60.Ak

I. INTRODUCTION TO CHARACTERIZATION the fractal dimension, depending on lacunarity. Dimensions
OF FRACTALS BEYOND THE DIMENSION: must not be multiplied beyond necessignd they have al-
LACUNARITY, NEUTRAL LACUNARITY ready multiplied beyond comfgrtbut necessity has arisen
AS DEFINED BY ANTIPODAL INDEPENDENCE, again. In effectDp measures how low or high a given fractal
LEVY DUSTS, AND THEIR SAMPLING PROPERTIES sits on a stack such as that illustrated in Fig. 1.

These issues raise a few difficultie®) The notion of

This paper uses probability theory to define a neutral fraclacunarity turns out to be many sided, giving rise to several
tal lacunarity and suggests a way to measure lacunarity whegistinct definitions. As a matter of fact, this paper will dis-
it is not neutral. Critical percolation clusters, for example,Cuss two versions of a concept one may deittuation la-
are of neutral lacunarity and will be studied elsewhere. Sevcunarity. (b) Some of those definitionfbut notDp) fail to
eral papers discussed lacunarity and its concrete uses. But tHefine a neutral statéc) All definitions are statistical. For
topic is still new and unfamiliar, therefore we shall begin by €xample, while the Cantor dusts illustrated in Fig. 1 are gen-
addressing the fundamental issues. erated by a deterministic mechanism, typical empirical stud-

Visual lacunarity.Consider the Cantor dusts stacked ini€s may involve, instead of a full dust 9,1), a piece con-
Fig. 1 reproduced frorfil]. These dusts share the same frac-tained between two points randomly selected in time; such a
tal dimension,D=1/2, but differ in an obvious manner. Piece is a random set. In the random context, each measure
Those at the stack’s bottom have small holes, can be d&f lacunarity is a function of a sample of observations. That
scribed as fine grained, and mimic filled-in intervals. In Ref.iS, even when the true lacunarity is neutral, with typical
[2] they are termedbw lacunarity Those at the stack’s top value 0, the value actually measured on a sample is a random
have big holes, can be described as coarse grained, aMariable. Hence, the difference between measurements made
mimic two dots; they are termetigh lacunarity This dem-  ©n samples of two distinct fractals will reflect not only the
onstrates a general point; a set with a given fractal dimensioflifference between true lacunarities, but also a sampling
D can be made to mimic a broad range of quite differentfror.
textures, pointing to the fact that the fractal dimension is not
enough to uniquely characterize fractals.

There is a strong need to measure quantitatively the dif-
ferences in lacunarity between textures in self-similar physi-
cal structures, such as galaxy distributions, spin domains in
magnetic systems, diffusion-limited aggregates, microstruc-
tures of porous and composite materials, and so on. Fourier
analysis and spectral characterization only give the fractal
dimension. It would be convenient if the quantitative la-
cunarity to quantify these differences would take the value 0
in those cases where the lacunarity can sensibly be said to be
“neutral,” i.e., right on the boundary between high and low. |

The main goal of this paper can now be sketched. A frac- \:llll\II:I:I:IlllllllllblllllltilllllH]HIJ\!lllllllIIIlilllllllllli|||IH1Hl||lH|II
al of non-neutral lacunarity seems to the eye to have an O
apparent fractal dimension different from the actual value. S A2 U A
Therefore, we shall investigate fractal dusts on the line and
define for them a quantity that will be denoted by and
called “perceived dimension.” This igsot a fractal dimen- FIG. 1. A stack of Cantor sets of equal dimensibn=1/2,
sion, but the eye trained on ixg dusts may perceive it as whose lacunarity changes from very low at the bottom to very high
one. The perceived dimension can be higher or lower thaat the top of the stack.
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The mass-radius relation, its prefactor, fhe prefactor's also [5]. This motivated us to investigate the e dusts
variability factor, and a measure of lacunaritgiven a ball  deeper, from viewpoints that did not previously seem com-
of radiusR in E dimensions, which encloses a self-similar pelling. The generalization to fractals embedded in higher
fractal structure, the total magmeasurgM (R) enclosed by dimensions is not straightforward and will be presented else-

the ball is known 2] to take the form where.
o This paper is constructed as follows. Section Il introduces
M(R)=FR (1. the Levy flight process and the resultant\yedust. The re-

duced masM (R)R P for the Levy dust is a Feller-Mittag-
Leffler (FML) random variable and we discuss its properties
and plot its distribution(apparently, for the first time Sec-

tion Il uses the ratio of variance to squared expectation of
the FML random variable to define the perceived dimension
D,. We mention in Sec. Ill generalizations concerning
higher cumulants of the FML distribution. Section IV ad-
dresses the distribution of the logarithm of the Feller-Mittag-
Leffler variable, and discusses its properties and its bilateral
Laplace transform. We show how its Fourier transform
yields an accurate measure of the fractal dimension. Section
é/_ analyzes the distributiqn of strides on theRraxis, which

is closely related to the hy-flight process. We show that
sthis distribution possesses a rich and instructive behavior and

similar with respect to all reduction ratios and hence calls we present numerical results in support of our predictions.

for description as a random fractal. A systematic fractal suctpection VI demonstrates the applicability of the Mittag-

as the Cantor dust is self-similar with respect to reductioH‘effler statistics to a nonlinear electrical network. We con-
ratiosr that fall into a geometric sequen¢such as 4" in clude in Sec. VIl by discussing some implications of our

Fig. 1); it follows thatF is a noisy function that is roughly '€Sults and possible new directions.
periodic with period IR [3].

or
In M(R)=In F+D In R.

The exponenD is the fractal dimension and is smaller than
the embedding Euclidean dimensién In the case of the

Lévy dust, the prefactoF is a random variable independent
of R. For bothF and InF, we obtain the expectation, vari-
ance, and other statistical properties. Operatively, the distri
bution of the prefactoF can be constructed by moving the
origin of a ball of radiusR throughout the structure, measur-

dure for many values dR. The existence of a well-defindd
independent ofR presupposes that the structure is sel

The prefactofF, or even its expectation, received far less Il. THE LE VY FLIGHT AND THE
attention in the literature than the scaling exponBntThe FELLER-MITTAG-LEFFLER RANDOM
importance ofF resides in its intimate connection to the VARIABLES AND PROCESSES
concept of lacunarity. To understand why, note that the en- . I
semble average relatiol.1), (M(R))=(F)RP, is in effect In the following, we shall adopt the probabilists’ nota-

the density-density correlation function of the structure mul-4ons. denoting random variables by upper-case letters and

tiplied by RE. In translationally invariant systems, the th€ir values by the corresponding lower-case letter. FODO

density-density correlation function gives information on the <1 @ truncated Ley flight process on the line is as follows

mass fluctuations, and hence on texture, but due to the dilaLl: Start ‘i‘”th a uniform distribution in the range,1),

tion symmetry of fractals, this function only yields the quan-Wheree—0", and choose an array & ordered numbers;

tity F and the scaling exponent of the average mass. Sincé =1,2,...M). From this array form the following sequence

as we have already noted, a fractal structure cannot be d&f numbersVy,:

scribed only by its dimension, one signature beyond simple

scaling is the statistical variabilitito be defined beloyof n s

M(R) for fixed R. Intuitively, this variability ought to be V=2, U7 (m=12,..M), 0<D<1. (2.1

smaller in a fine-grained structure than in a coarse-grained -

one. Hence, a possible signature of lacunarity is the ratio of . . . .

the variance to the square of the expectation, as measured fof€ Collection of the point¥/,>0 on the positive half line

eitherE or INF. constitutes a truncated g dust. It is knqw_n that2 in the
The Levry dust as a yardstick of neutral lacunarity; antipo- limit &0, f[h_e ””mb_er of these points within a distarite

dal correlation. The least structured or “most relaxed” of all oM the origin s§t|sf|§s Eo[_.’L.l).

point distributions on the line is the kg dust, which is The FML d|str|but|on.lt_ is known [6].th"?lt the random

generated as the set of positions of an increasiry ffigght. prefactp_r F fOHO.WS. the Mittag-Leffler distribution, whose

The successive steps in a flight follow the distributionProPability density is

P{U=u}=u"P, and are independent. Therefore, thery.e

dustL has the property that, if the origid belongs td_, the (-1t o1

portions of the dust to the right and the left Qfare statis- #olf)= a kzl (k=11 SiIn(wkD)T (kD)

tically independent. Those opposite directions are denoted by

the term “antipodal.” One of u$2] observed that a positive

correlation between those halves is perceived as low lacunar- 0<f<e. 2.2

ity and a negative correlation is perceived as high lacunarity.

It follows that the Lery dust is a useful standard okutral ~ The Mittag-Leffler distribution was first observed by Will

lacunarity. It was showr{4] that linear cuts through critical Feller, who chose this name because the generating function

percolation and Ising clusters are of neutral lacunarities. Seef up(f ) is the Mittag-Leffler function:

©



114 RAPHAEL BLUMENFELD AND BENOIT B. MANDELBROT 56
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FIG. 2. The variability factor®(D) for the Levy flight (solid
line). The dotted(dash-dotteflline is an example of systems with
perceived dimensiond) higher (lower) thanD and hence with

lacunarity which is below@above neutral.

©

o —t k
E(I|MD)=L e up(f)df=2 l“((T)kD)

k=0

The variability factor is independent & due to the self-
similarity of the Lavy dust, and is related to the fact that the
jumps of the Lay flight have an infinite expectation. For the
stopovers of a flight in which the jumps have a finite expec-
tation, the variability factob depends orR, and tends to O
asR—oo, which is a restatement of the law of large numbers.
(For example, in a Poisson process, the variability factor var-
ies asR 1) For the Layy dust, the factoP(D) is indepen-
dent of R and decreases monotonically with the fractal di-
mensionD. For example®(D—0)—1 for ®(D =1/2)=x/2
—1=0.5708, andb(D—1)—0.

It was to be expected that, for the\yedust, the value of
this lacunarity should depend strongly on the fractal dimen-
sion. Indeed, a Dey dust nearD=1 is almost uniformly
distributed and the variability factor of its mask|(R),
should be small. On the other hand, avizelust withD <1 is
extremely uneven and the variability factor of K&(R) has
to be very large. The graph di(D) confirms that for Ley
dusts lacunarity increases & goes from 1 to 0. It also
shows thatd(D) is very sensitive td nearD=1, where
®’'(1)=—-1, and not at all sensitive nedd=0, where
®’'(0)=0. Therefore, the techniques to be advanced below
are better suited for values @ that are not very small
compared to 1.

The perceived dimensiohet us consider now the Cantor
stack shown in Fig. 1. When the lacunarity is far lower than
neutral, the set mimics a filled-in interval. That is, it mimics
a misleadingly higher value dD. This in turn means that
one expects the variability factor to be smaller than the true

We hope that our denotation here will restore to W. Fellervalue of (D).

some credit that he deserved but chose not to claim. A few The function®(D) suggests then a perspicuous way to
properties of this distribution were knowi7]: for D—0,  measure lacunarity. Invert the functig(D) for the Levy
wp(f )—exp(—f); for D=1/2, up(f ) is a half-Gaussian; dust, Eq.(3.1), to obtain a functiorD y(®), where the index
and, forD—1, up(f ) approaches thé function. The form N refers to the neutral character of théviyedust. From the
of (2.3 indicates that the integen-th moments ofup(f )  measured histogram d¥ for any given real system obtain
are the measured value @b. Now insert the measured value of
® into the functionD (P). The result can be called(misu-
(2.4) ally) “perceived dimension,” which we denote iy,. The
three possibilities that arise are interpreted as follows: When
Dp=D, the lacunarity is defined as neutral; whBp>D,
the lacunarity is defined below neutral; whénp<D, the
lacunarity is defined above neutral.
Thus, one can take the value bf, as a measure of la-
narity. For example, suppose that in Fig. 2 the dotted and
ash-dotted lines represent a set of measurements of the sys-
tems’ variability factors. The entire dotté¢dash-dotteflline
shows a perceived dimension highgower) than D and
therefore its lacunarity is belowabove neutral. Note that
this measure provides a different scale for each yea
complication that may be avoided by taking the ratio of per-

The variability factor.A possible second-order character- ceived to true dimensior /D [or perhapsDp/(1-D)],

ization of lacunarity is the variability factd®] but we have not yet explored this idea.
Higher order variability factors.Once again, the main
(F=(H ()

significance of®(D) in measurements of self-similar ran-
(H2(f)?

|
<fm>:r(1+mD)'

The FML random processesThe reduced mass
F=M(R)R P can be considered a function Bf Its mar-
ginal distribution for givenR is a FML distribution, whose
sample functions in time to our knowledge have not beer}:u
investigated until now. We think that they deserve to bed
called FML random functions.

Ill. LACUNARITY AS DEFINED THROUGH THE MASS
VARIABILITY, AND THE CONCEPT
OF “PERCEIVED DIMENSION”

d(D)= 1. (3.0

dom data is that it helps distinguish different fractals with the
same, or similar, values & but different structurélacunar-

ity). One can generalize the above analysis to orders higher
than second and define the following families of quantities,

From Eq.(2.4) we find

o D_2r2(1+D)_1
( )_IX1+2D) ’ Cu(D)

which is plotted in Fig. 2 againdd. S(D)= [C,D) (3.2



56 LEVY DUSTS, MITTAG-LEFFLER STATISTICS, MAS . .. 115

TABLE I. Values of S, for k=2,3,4 atD—0, 1/2, 1.

D S=(D) S Sy |
D—0 1 2 6
D=1/2 ml2—1 2—ml2 2m—6 J
D—1 0 0 0

In this expressiorC,(D) is the kth cumulant of the FML
distribution. Clearly,S,(D)=®(D). It is straightforward to
show thatS, (D) is a decreasing function @ for all k. For
example, foD—0, 1/2 and 1 an&=2, 3, and 4 we find the
values given in Table I. For alk, in the limit D—O0,
S—(k—1)! and whenD—1, S, —0.

FIG. 4. The logarithmic Mittag-Leffler probability density
against log(x) for D=0.1-0.9 in steps of 0.1. The highest peak
belongs to the curve witb=0.1.

df
IV. THE LOGARITHMIC MITTAG-LEFFLER — f=gaY)|—
DISTRIBUTION 9oly) = #olT=€)[gy o
The traditional way to analyze fractal structures is to plot e & (—eV)kt
In m against InV,,,, which yields the fractal dimension as the - p W sin(7kD)I'(kD), (4.1
=1 - .

average slope of the resultant line. After this linear line has
been subtracted, the plot of b as function of IR re-
sembles a noisy time series. Figure 3 shows a typical plot o
such a process with =0.2. It is therefore natural to call I
the logarithmic Mittag-Leffle(LML ) random variable.
Consider the random variabl&sandR defined through

here —oo<y <o,

Numerical evaluation and unimodalityrigure 4 plots
g(y) for values ofD that range fromD=0.1 toD=0.9 in
steps of 0.1. These plots are obtained by numerical evalua-
tion of the sum in Eq(4.1), cut off at a valuek,,,, beyond
which the remainder of the sum can be neglected.

For all D, gp(y==)=0. Sincegp(y) is not constant,
there exists at least ong for which g(y*) is a maximum,
i.e., gp(Y*)=gp(y) for all y. It can be shown very easily
that for D—1, 1/2,y* is unique, so thay(y) is unimodal.
Indeed, by plottingg(y) for many values oD between 0
and 1(Fig. 4 we find that this result holds for ab in this
Using Eq.(2.2), the probability density o¥ is range. _

The bilateral Laplace transform and related analytic re-
sults The bilateral Laplace transform gf(y) is

R=1In R,

Y=InF=InM-D InR.

= T(1+1)

£tloo)= | oondy- s (@2

. for any positive and integer value tf The right-hand side of
Eq. (4.2 is obtained by substituting the for#.2) in the

1 integral and changing variables te=€”. The proof that the
resulting integral is exactly théth moment Eq.(2.4) is

T straightforward and uses Eg&.2) and (2.4). For complex
valuest= #+ir (provided that the integral for the moment
1 exist9, we use the generalized form of the gamma function
[9], and relation(4.2) becomes

in(M)

T'(1+6+ir)

T+ (0+i7)D)’ 43

L(6+i7|g)=

1 which for #=0 is the bilateral Fourier transform. Usifg],
the spectral intensity is

s 1 sinh(77D)
In(R)
| A T|9)|2=5 St 4.9

FIG. 3. A typical plot of the mass logarithm vs the radius loga- _ .
rithm (both natural logarithms The fractal dimension in this plotis Relation (4.4) is easy to check for the three values Df
D=0.2. where the FML is known explicitly. Integrating over the
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(i 7)th momentF(7|g) =/ §f "up(f )df immediately yields u, P

Eq. (4.4) for these three values. Pm=Vm—Vpo1=In| 1+ g=5—— (5.
Direct relevance of relation (4.4) to practical measure- 2 u- Lo

ments of D For small values ofr we find, by expanding =

relation (4.4),
has a limit distribution independent of. We reiterate that

2 the FML random process! (R)R P can be viewed as func-
- ) . : )

i 2.1-(1-D)2 — 2—ext — m272(1—D2)/6\. tion of In R and it becomes a Feller-Mittag-Leffler process in
7719l ( ) 6" A= mr( )/} this variable. The random variablg, is the difference be-

(4.5  tween themth and thelm—1)th steps on the logarithmic axis
on which the Ley dust was mapped. In practice, as we
Wheneverr is not very small, such that expD) is not  know, the values ofi; are picked from a uniform probability
very close to 1, we obtain density that ranges from,,=€>0 t0 Upa=1. A lower cut-
off is required by both physics and computational con-
) straints. We stress that the results are independent, of
In(|A(7|g)|*)~consi[ - m(1-D)7]. (460 which simply facilitates the calculations. Thus the probabil-
ity density ofu; is
Thus, plotting the intensityF(7g)|? semilogarithmically it
should be possible to observe a constant sloperfot/ f(ui):[
(27D), which extends over a wide range of valuesroFor

small values ofr (>&/[n(1-D))), this plot should be de- e now seek the probability density of the variable

creasing parabolically. It follows that relatior.6) and —ex The probability density ofr. P(»). can be
(4.7) allow one to cross determine the dimension of the sys{c;"und t%fcr)na.gh P y y ofi, PO,

tem. Given a system whose fractal dimension is unknown, al
we need to do is construct the histogram of the random vari- _ fx
0

Ul—e), e<u<l

0, otherwise. (5.2)

ableY and then Fourier transform it. Plotting the logarithm  P(v,,)=
of the absolute squarghe intensity of the Fourier coeffi-

-1D
1+ %—)}
Em: lui 1D

I1 f(uodui)ﬁ Vin—
i=1

cient as a function of should give, away from the origin, a m

—up[ M1
straight line of sloper(1—-D) as in Eq.(4.6). This method — b ff { H wi(D-%—l)dwi}
can be used to check on the traditional method of plotting 1-¢/ )1 i=1
Inm versus InR,). Furthermore, this technique may be m—1 —(D+1)
more accurate for systems that are not large enough for the _ '
usual mass averaging. Therefore its applicability is more x| (v 1)21 @i 5.3
promising at low fractal dimension® <1). We will pursue
this issue in Sec. V. Using the normalization condition and some algebra we find
that
V. THE DISTRIBUTION OF THE RELATIVE JUMPS ~ B € _(D+1)
IN THE RADIUS Plvm = a=ezym=pp ("m~ 1 (5.4

Self-similarity concerns dilation or reduction, which are The next step is to obtain the probability densitygqf:
multiplicative operations. Taking logarithms transforms

them into translations. A particular application of such a

transformation to logarithmic coordinates is discussel®]n P(pm) =
For example, take the standard Cantor dusitGyh], extrapo-

late it to the right by successive expansions of ratio 3, and

look at it in the coordinatér=In =. When the dust is infi- = > 5 5T
nitely interpolated, its image in (time) is a periodic point (1—e)(m=1)~ (e/m—1)
process on the whole line, in which large gaps of length In 2where is defined over the interval
alternate with deformed Cantor dusts of lengt{8/&). Now, Pm

consider a truncated dust, i.e., one interpolated down to a (In[1+ €P/(m—1)],IN[1+ e YP/(m—1)]),
smallest “atom,” but no further. Its image in (time) is a

process on the half-line to the right of the origin. The suc-which tends to(0,«) as e—0. This probability density de-
cessive large gaps are unchanged by the imposition of atreases monotonically with,, from its maximal value of
inner cutoff, and the successive pieces between the gaps

-~ dv,
P(vm) 7—
" deml, oo

eD efm

(5.5

build up as one moves right to an infinitely interpolated de- D 1D

formed Cantor dust. In that limit, the distribution of the gap Pmax_l_ €2 [(m—1)e +1] (5.6
lengths converge to a well-defined limit. For small gap

lengths, this limit is PA¢/>u)~u"". at the lowest value op,,. Moreover,P is a strictly convex

Let us return to our random Mg dust. Once again, in function of its argument; a property that can be verified by
logarithmic coordinates the dust transforms into a stationargonsidering the signs of successive derivativeB o terms
random point process. In other words, the quantity of t=e’m—1, Eq. (5.5 becomes
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-D -D-1 D A
P(t)=Po(t™ "+t ), Po= A=A (m=1)° (5.7

The sign of thekth derivative d(k)P(pm)/dp k is the same
as that ofd®P(t)/dtk=(—1)X. This change of sign with
successive differentiations shows tti¥tp,) is strictly con-
Vex.

In the plot of the logarithm ofP(p,,) as a function of
tm=explp,) —1, it should be possible to detect the combina-
tion of the two slopes-D and —D —1 in expression(5.7).

At low values oft,, (i.e., p,, very close to zerpthe mean
slope is—D —1 and it crosses over toD for large values of
ty,. This distribution plays an important role in many physi-
cal systems and the tail of the cumulative distribution of the
variablep,,, G(p), is

G(E)Ifl _Plpmdpm=1= z[(P 1)7°P(m-1)°-e.
(5.9

Since the behavior is not purely exponential irplthere
appears a crossover when the first term in the curly brackets
becomes comparable ta This can be understood by in-
specting relation5.8): asD decreases, the first term in the B
curly brackets decreases and for a given value tfe two

terms become comparable for larger value$ of FIG. 5. A varistors electric circuit realization of Mittag-Leffler

variables and statistics.

VI. THE FML IN A SYSTEM OF NONLINEAR VARISTORS Substituting these into Eq1.1) yields
The Mittag-Leffler statistics have many interesting appli-

cations in physical systems, most of which have not yet been
recognized or addressed. Here we give an illustrative ex: Cnd
ample of one such application: the occurrence of the FML2
distribution in a conducting system of varistors. A varistor is
a nonlinear resistor that follows a current-voltage character- (Rag)=1[mI'(1+a)]. (6.5

RAB:F/m, (64)

it follows thatR,g is a FML random variable with
w,(f) [see Eq(2.2)]. For example, the average Bfg is

istic of the form[10]

V=rle, (6.1
i

whereV; and|; are, respectively, the voltage drop and the (8RAg)=(Rag) — (Rap)?=

current pertaining to thgth varistorr ;

i is a coefficient, which

we term resistance due to its being parallel to the usual linear

resistance, but whose units affA“ 1. The parametew

(which is usually temperature dependeist presumed con-

Similarly, the second moment of this distribution is

1
ml(1+2a) mT3(1+a)’
(6.6)

and so on. Thus the above analysis directly applies to this
system and one can learn about the statistics of the nonlinear

stant for all the varistors in the structure. We shall limit our conducting system by adapting relations from tH@'y_dust

discussion to the sublinear regimez@<1. We considem
varistors connected in parallel between two nofles\dB as
in Fig. 5,

Vag=Raslas- (6.2

The question that we address is hBwg is distributed. For a
given realization of the local variables, the value oR,g is
given exactly by

RAB:(Z fj_lla) . (6.3

The direct equivalence between relatiqies3) and (2.1) is
immediately apparent via the transformations

a—D, rjeu, V<—>RA1/a.

statistics.

It should be mentioned that the same calculation can be
applied tocontinuousnonlinear dielectrics with slabs in par-
allel or perpendicular to the capacitor plates, since the ex-
pression for the total dielectric constant has exactly the same
form as Eq.(6.3) [11].

VIl. CONCLUSION

Characterization of fractal structures by lacunarity is a
much needed step beyond description by a fractal dimension.
It is difficult to know from measuring a seemingly random
structure what is the process that generated it. Further, even
if the process was known, the structure’s statistics are usually
difficult to analyze. Therefore, it is of value to have a base-
line system, whose mass distribution is well understood, and
against which lacunarities of other fractal processes can be
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compared and classified. We propose theyLdust for this  possible characterizations of lacunarity. See, e.g., Réls.
role. Since the Fourier transform of the LML distribution is and[4]. For Cantor dusts and other highly hierarchical struc-
known explicitly, one can analyze the spectrum of a meatures,M(R)R P is not a random variable independentRyf
sured stochastic process at hand and compare with the Le but rather a noisy periodic function of R[3] and the notion
dust. The similarities and differences can then yield informa-of lacunarity becomes more involved. Such a log-oscillatory
tion about the rules that generated the observed structure. behavior occurs, for example, in fracture sidebranchi®

We addressed in detail the lacunarity of thery elust and
generalized the definition of lacunarity given[®# to higher
order cumulants of the distribution of k obtaining a family
of related quantitie§, for the Levy dust, theS, depend only
on the fractal dimensio. This confirms that lacunarity

and in many biological branching systems. The notion of
lacunarity is also beginning to play a central role in the study
of diffusion-limited aggregationl13]. A related approach to

lacunarity[4] concerns the statistics of antipodal correlations
about points in the structure. In one dimension, for example,

cannot reduce to one number but requires several measuriis consists of correlations between “forward” and “back-
ments that are mutually dependent in subtle ways. word” structures. The connection between this and our ap-
We also discussed the distribution of the strides betweeproach deserves a careful look.

themth and thgm—1)th steps along the IR axis, and found

its tail distribution. This tail is directly related to the apparent
self-similarity and gives another possibility to measure the
fractal dimension. The advantage of this method of determin- R.B. acknowledges helpful discussions with A. Aharony,
ing D is in its robustness against errors due to too smally. Gefen, F. Guder, A. R. Bishop, and thanks the IBM T. J.
statistics and hence is valuable for low valuesDgfwhere  Watson Research Center, Yorktown Heights, and Harvard
traditional approaches need gathering of many points, resortdniversity for hospitality and support. J. S. Lew and D.
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